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SOME PROPERTIES OF EQUATIONS AND THE METHOD OF THE SMALL PARAMETER 

IN TWO-DIMENSIONAL SPATIAL PROBLEMS OF THE THEORY OF IDEAL PLASTICITY 

S. B. Maksimov and Yu. V. Nemirovskii UDC 539.37 

Interest in two-dimensional spatial problems of ideal plasticity theory is due, to a 
significant degree, to the fact that the majority of industrial operations (rolling, drawing, 
and immersion of tubes and rods) leads to the study of problems in a three-dimensional co- 
ordinate system in which the quantities to be determined depend on two coordinates. We as- 
sume that the components oij (i, j = i, 2, 3) of the stress tensor and the components vi of 
the velocity vector depend on two variables ql, q2 in an orthogonal curvilinear coordinate 

system qi (o13 = o23 = v3 = 0). The Lame coefficients H~ m = are also functions 
h=1 \ a~ / 

of these coordinates: H~ = H~(ql, q2). Included in this class are axisymmetric problems 
(r, z, e), problems in a spherical coordinate system (r, e, ~), problems for bodies bounded 
by coordinate surfaces of degenerate "oblate" and "prolate" ellipsoids, toroidal coordinates, 
paraboloidal and bipolar coordinates of revolution [i, 2], and many others. The most com- 
pletely investigated problems are the axisymmetric problems with a Tresca-type plasticity 
condition [3-5] and some special regimes. Most of the exact and approximate solutions have 
been obtained for total plasticity [6-10], when the problem becomes locally statically deter- 
minate and the system of equations in the stresses and velocities is of hyperbolic type. 

The intensive use in recent years of anisotropic powderlike materials, as well as of 
materials having diverse yield limits in tension, compression, and shear, calls for an ana- 
lysis of the equations under a more general yield condition. Such an analysis makes it pos- 
sible not only to extend the class of exact analytical solutions, but also to develop a uni- 
form method for obtaining sufficiently reliable approximate solutions in the event the formu- 
lation of exact solutions is not possible. Our aim in the present paper is to analyze some 
general properties of the equations for two-dimensional spatial problems of plasticity theory 
and to develop, based on these properties and also extremal properties of limiting loads 
for rigid-plastic bodies, a uniform method for solving such problems. 

i. In the general case involving two-dimensional problems of an ideally rigid-plastic 
orthotropic body (coordinate axes coinciding with the axes of orthotropy) it is assumed that 
in the four-dimensional stress space there exists a nonconcave piecewise-smooth yield surface 
and that there is a valid associated plastic yield law 

oF~ OFh, ( I .  i ) 
~i~ = ~tk o--~[ i ,  2 ~ 2  = t~  a+~ 2 

(no summation on i), where 

~ = 0 ,  if  F h < O  or F~--= O, dFl+<O, 
t z h > O ,  if Fk = OanddFk ---- O; 

t v2 1 vl 
81 "I----~ii/~I,I "~ ~ JY~I,2, P+22 = ~2 ')2,2 "~ ~-----~ ..H'2,1,, 

(1.2) 

Krasnoyarsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
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vl ~% ' = ~I-I~(vil___ ,x + tt-"~tt~(q~iI--i]a'~ (1.2) ~,~-  ~ ?  H~,~ + u~ ~, 2~.. 

The c o m p o n e n t s  o f  t h e  s t r e s s  t e n s o r  mus t  s a t i s f y  t h e  e q u i l i b r i u m  e q u a t i o n s  

(H:Ha(1n)a + (HJlachr + (h2H~HL~ --  (r29~H~H2,~ --  63aHzH~,~ = O, 
(~.3) 

(H~HaCrl,a),.~ + (HIHaO'~2),~ q- 6x2H~H~,I - -  o'nHaHl,,z - -  6~3H:tH2,~ =: 0. 

For t]he singular regime FI = F 2 = 0, formed by the intersection of two smooth surfaces, 
the stress tensor components can be expressed in terms of two parameters and the problem 
becomes locally statically determinate. We introduce the following notation: 

au~ ----- (3F~/O(1iy , A I = amaaa ~ -- an~aaat, 

A2 =:' a=~.laaa2 - -  a22aa~81, As = a~=taaa2 -- aaaxa12a, 

A 4 ~ a~112~22 - -  21122121, A 5 = 22~1a122 ~ 222221~1. 

Using the implicit function theorem [ii], we can determine, depending on the sign of 5 = 
As 2 - 4A15~, the type of system of equations from the expressions 5 > 0, A = 0, A < 0, i.e., 
whether the system is hyperbolic, parabolic, or elliptic [12]. 

Similarly, expressing the ~k in terms of the deformation rates ass, el2, we obtain, from 
the associated law (i.i), a system of equations in the rates: 

Aagl~ : 2Alq2 + A4eas, A~e2~ : 2A~qz -i- A~%~. ( 1 . 4 )  

The equations of the characteristics and the relations on them are determined by the expres- 
sions: 

5-A~+V~)/~ (m I 2), dq2 ~ m  = --  --'~ 
dq"-~l = H2 \ 2A 2 

AxH1H2H3d(11,- LmA2H~H3d(1 n + {[AIH1 (Half3),1 + LraA.,H2tt3HI,a] cr~1 + 

+ [~l (H~H3),2 - -  ~,rnAo (H~Ha),I] %~ + i~,~.A2H~ 2 - -  Atria,, ]H1H,2%3 - -  
- -  [AIH1HzH2,1 + ~'mA2H2 (H1H3),2] ~22} dql = O, 

H ldv~ + ~,,ntt2dv., + {IIxH1,2H~lv2 + (~m) 2 H 2 [ [ 2 , 1 [ I l l U 1 -  

-~m [~Hla + v~H2 1l + [A,S~ + Z~0HIH~] ~r [<H~a (HIH~) -~ + 
+ v~H,,~ (H~H~)-I]} dql = 0." 

(1.5) 

An example of a singular regime is the condition for total plasticity [5] 

fl = ((111 -- %2)' + 4 2 (119 -- ~k 2 = 0, F2 = (133 -- ((Yll -~ (~22)/2 =i= k = 0. 

In this case, 

h i  ---- - - A 2  = 2((1n - -  (:r2z), ha - -  8(1v,,  h = i 6 k  ~ > 0 ,  

i.e., the system of equations is hyperbolic and the characteristics of the different families 
are orthogonal. 

For art incompressible material the singular regime always leads to a hyperbolic system 
of equations, the characteristics of the distinct families being mutually orthogonal. Actu- 
ally, for a plastic incompressible material 3Fk/8oil = 0 (k = I, 2) or a33 k = -a~l k - a22k, 
5 z = -A 2, A ~ 0. If A > 0, then %1~2 
orthogonal. 

In the case of multiple roots h I 

= -HI2H2 -2, i.e., the characteristics are mutually 

A3H 1 
dq'--~Idq 2 ---- ~1 = -- ~A2H2, 

= %2 the relations on a characteristic have the form 

( 1 . 6 )  

+ a1~ (H~Ha),I --  IItH2H3,ff%a] dq, =. O, 

H1H*Hsd(Tn + [H1 (H2Ha),Fq, - -  HIIIaH2,,%2 + 
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+ %2 (H~H3),2 --  HxH2H3,,c%a ] dqx = O, ( 1 .6  ) 
d h  + {HI.,HTb~ + H~A.a; -~ [ v ~ , ,  (H,,%) -~ + ~,,Lr. ~ (~H, ) -q}  aq~ = 0.: 

dY2 -~ [Hz'zHllvl  '[- tIzz~saal [UIH'3,1 (//'1/2/'8)--1 -]- UiH3,2 (H21-[3)-1]i dql = O. 

Taking into account that the edges of the yield surface can be regarded as the result 
of an infinite variety of ways to approximate the initial yield surface, we see that the 
analysis carried out can be useful in constructing nonformal approximate solutions of the 
initial problem by going from a "nonsuitable" system to a more "suitable" one. For example, 
if the initial piecewise-smooth yield surface leads to an elliptic system of quasilinear 
equations whose solution cannot be found, the problem can be reduced to two amenable hyper- 
bolic systems by introducing a manifold of approximating yield surfaces possessing the very 
weak constraint: A > 0. If we take into account the fact that such a manifold contains 
both inscribed and circumscribed surfaces with respect to the initial yield surface, we can, 
in this way, construct in a uniform manner simultaneously upper and lower bounds to the ini- 
tial loads. 

2. Let us assume that the solution of the problem depends in a regular way on the small 
parameter d. In accordance with the method of perturbations [13], we seek a solution in 
the form of a series in powers of the parameter 5: 

"JO,~O n=O ~=0 

If we write the yield conditions in the form (2.1) and equate coefficients of identical powers 
of the parameter in the relations (1.1)-(1.3), we obtain a sequence of systems of equations 
for the approximations. For the singular regime 

F, = F~ ----- 0 (2 .2 )  

the type of system of equations coincides precisely with the type of system of equations 
of the zeroth approximation. For a nonelliptic system of equations the characteristics for 
an arbitrary approximation coincide with the characteristics of the zeroth approximation. 
Indeed, from the yield condition (2.2) and the law (i.i), we obtain 

a(O) ~(.) ](k.) 
ij~,~j + ---- 0 (k =. 1, 2); ( 2 . 3 )  

Fk iih -l- 1~7 ), ~ (n) ' (n)a(~ 4" lIZ ) ( 2 . 4 )  7'812 ~ la'k 12k 

(no summation on i ) .  Here fk  ( n ) ,  f i j  (n)  depend on t h e  p r e v i o u s  a p p r o x i m a t i o n s  and,  conse -  
q u e n t l y ,  a r e  known f u n c t i o n s .  S u b s t i t u t i n g  t h e  r e l a t i o n s  ( 2 . 3 )  i n t o  t h e  e q u a t i o n s  ( 1 . 3 ) ,  
we n o t e  t h a t  t h e  t y p e  o f  sy s t em o b t a i n e d  c o i n c i d e s  e x a c t l y  w i t h  t h e  t y p e  o f  sys t em f o r  t h e  
z e r o t h  a p p r o x i m a t i o n .  The sys t em of  e q u a t i o n s  f o r  t h e  r a t e s  i s  a n a l o g o u s  t o  t h e  sys t em ( 1 . 4 ) .  
In  t h e  ca se  o f  an e q u a t i o n  of  h y p e r b o l i c  t y p e  (5 ( ~  > O) t h e  c h a r a c t e r i s t i c s  c o i n c i d e  w i t h  
t h e  e x p r e s s i o n s  ( 1 . 5 ) ,  and t h e  r e l a t i o n s  on them,  f o r  an a r b i t r a r y  a p p r o x i m a t i o n ,  a r e  d e t e r -  
mined by t h e  f o l l o w i n g  e q u a t i o n s :  

A(O) r_r rz ~r z.(n) A VO)H2 H a~(n) { [A(I~ (HiH3) a ( 2 5 ) 

4- ~)A~~ (Yi~) + [Ai ~ (H~Ha),, - -  XC~ ~ (H~Ha),I] ~Yi~ ) - -  

~(o)^(o) .(,,). r~(o),,(o). A(o)H~,~] • [A?)H~H~H~,~ + ~., ~ (H~H~), d + &H~ L ~  ~ ~ . , ~ - -  - -  ~ 2 2  

X (Y(~a)- HIHiHaAIO)[(A(~176 ) -I- (A(~176 -t- 
Ha(O)~(n) a(O) ~(n)~IA(O)~ II 

Hidv(zn) + ~)H2dv(~ ) + [H~H2 Hl,o.v~ + x,~r~ j "'~'*l ..,,1ui - -  

(,,) tA~o) . ,  _ (~))=a~Hcr 0 (~i-~H~,~ (H~H~)- '  + 

-I- V(n)Ha,e (H=Ha)-I ) /  A7) - -  1~7 ) - -  ~,(m~ ~ 1~)--  ( s176 - -  

A(0) (r ~-~ 

The property of conservation of characteristics can be used effectively in the construc- 
tion of a numerical algorithm since the necessity of rebuilding the field of characteristics 
for each approximation is eliminated. This method is especially effective when a piecewise- 
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linear yield surface is used. In this case, aijk(~ = const, fk (n) = fij(n) = 0, and the ex- 
pressions are preserved on the known characteristics, coinciding exactly with the relations 
for the zeroth apDroximation. In the general case of piecewise-smooth surfaces and the singu- 
lar regime, fk(n), fij(n) ~ 0, use of the method becomes difficult because of the need to 
maintain all the previous approximations in the computer memory. Therefore the following 
procedure is possible. Having obtained the zeroth approximation, and having subsequently 
constructed the field of characteristics with the aid of the relations on them, we construct 
the field of stresses and rates for the first approximation; next, takin~ into account the 
first approximation, we obtain the field of stresses oij = oij (~ + ~oij ~I) and rates vi = 
vi (~ + 6vi(1); this field is taken as the initial zeroth approximation, the characteristics 
are corrected, and the procedure continued until the required accuracy is attained. 

3. In the general case of a regular regime when the solution of the problem becomes 
substantially more complicated, the problem ceases to be locally statically determinate [14, 
15]. With the exception of certain special regimes in which the problem becomes kinematical- 
ly determinate, there is a need for a joint solution of the system in terms of rates and 
stresses, and the resulting system of equations does not have (with a certain exception) 
real characteristics [15]. For an approximate solution in this case we can apply the fol- 
lowing method. Let F = 0 be a smooth regime corresponding to the initial problem. 

We seek a solution to a "fictitious" problem, having the boundary conditions of the 
initial problem, with a yield surface F i = F 2 = 0, where the Fk (k = i, 2) possess properties 
intrinsic to the initial surface: a) the Fk are smooth and nonconcave; b) if the initial plas- 
tic material is incompressible, i.e., if 8F/Soil = 0, then the regimes Fk have the very same 
property: 8Fk/8oii = 0. We also select the surfaces Fk such that the oij, satisfying the 
condition F l = F 2 = 0, automatically satisfy the condition F = 0. This can always be done 
in an infinite number of ways. For example, in using the von Mises criterion 

F = (Oli - -  (;22) 2 + (all  ' - -  (;83) 2 + ((;22 - -  (;38) 2 + 6(;~2 - -  6~2 = 0 

we have the following var iants :  

F I  I? = (;33 - -  C~l(;if - -  (;22 (I - -  ~i) -~ V k, F2 I? = 6(;~2 ~-(Gll - -  (;22) 2 )< 

• [I - -  2 ( i  - ~i)  21 - 4 ( i  - ~i)  (~,i - (;22) vk + 2k 2 (v 2 - 3). 
(3.1) 

Depending on how we choose (~i, Y), we obtain a whole spectrum of "fictitious" problems. 
The field of stresses obtained for a "fictitious" problem is statically permissible for the 
initial problem since it satisfies, by construction, the boundary conditions for the stresses, 
the equations of equilibrium, and the yield conditions. The field of rates for the "ficti- 
tious" problem will be kinematically feasible for the initial problem since it satisfies 
the boundary conditions for the rates and, in the case of an incompressible material, the 
condition of incompressibility. The fields of rates and stresses for the "fictitious" prob- 
lem satisfy all the conditions, but they violate the associated law of plastic flow of the 
initial problem. Using extremal principles in the theory of an ideal rigid-plastic body 
[17], we make it possible through their use to obtain lower and upper estimates for the level 
of limiting external loads. A wide spectrum of possibilities of a single type allows us 
to select a best estimate. 

The best variants with respect to the stresses and rates will be, respectively, those 
which give a maximum estimate of the load level with respect to the stresses and a minimum 
with respect to the rates. It is possible to have cases in which the best estimates yield 
solutions constructible from a combination of these variants in various regions of the prob- 
lem studied; i.e., when the parameters ~i and u in the conditions (3.1) vary discretely or 
continuously in the various regions. In the case of an incompressible body, the type of 
the equations for the "fictitious" variants is hyperbolic; this allows us to use the method 
of characteristics and to algorithmatize the selection of the variants. In solving "ficti- 
tious" problems it may turn out to be useful to apply the method of expansion with respect 
to a small parameter. 

We remark that in the study of singular regimes we need to have ~k > 0; this agrees with 
the requirement of positiveness of energy dissipation in plastic regions. In solving "fic- 
titious" problems the condition ~k > 0 may be violated. Despite this, the rate and stress 
fields obtained will be statically admissible and kinematically possible for the initial 
problem and the requirement ~k > 0 may be waived. 
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The method of constructing two-sided estimates of the limiting loads was widely used 
in the analysis of industrial problems involving plasticity [18-20]; however, the selection 
of kinematically possible rate fields and statically admissible stress fields was stipulated 
to a significant degree by the subjective qualities of the investigator. Here, as an ex- 
ample, we illustrate the general approach proposed by considering a problem dealing with 
the drawing and extrusion of rods (Fig. i) subject to the von Mises yield condition. We 
assume that in contact with the die in the spherical r, 8, ~ coordinate system the law of 
constancy of friction, o12 = ~k is valid. We introduce a "fictitious" problem with the yield 
condition (3.1) with 7 = ~i - ~z); we seek its solution in the form of an expansion in 
terms of the small parameter ~. Then in the zeroth approximation in the conical portion 
of the die we assume a radial flow of the material: 

~,(,o) = 2Vhh~r_~ ( t  - -  cos a ) - ' ,  

o~ ) = ~ 2o, In ," + const, o (~ -~(0) "(") (o) ~f.3 k, 22 = u a a  = U l l  -- 0"~ f i l e  = O)  (~S = 

where Vk (k = i, 2) is the rate at the entrance and at the exit of the die. The character- 
istics of the system (Fig. 2) are the logarithmic spirals r = const exp (• In the regions 
AOA z, OAzOz, AIOzA= we solve successively mixed boundary-value problems with the aid of the 
relations (2.5) on the characteristics. The boundary-value problems have the form o12 (n) = 
olz (n) = 0 on OA; oi2(i) = k, o12(n) = 0 on AA 2 (n > i); o12[n) = 0 on 00 I. Calculation 
of the rates is effected in the reverse order; moreover, the normal component of the rate 
vector is given on the curves A201, A2A , and OzO. The use of numerical procedures of the 
same type allows us to obtain a sufficient number of approximations. To obtain a rough esti- 
mate in closed form in the conical portion of the die, we assume radial flow of the material. 
Then, taking the first approximation into account we have 

vi = Br-~ [1 + 4 I/r3 Fc tg  ~- 2 

a n = A - - 2 ( ~ , l n r  ~t k c t g 2 | n r + 6 k c t g  lncos  7 ,  

O a %.2 = i~k t.g -~- c t g T ,  

( 3 . 2 )  

where A and B are constants. 

From the condition of incompressibility of the medium it follows that 

B = Vhh~ [2 (l 

2 5 r~vl (0) sin (}dO = Vhh~, 
0 

2 c~ ~ lncos--~ -t- sin ~ 

The boundaries separating the rigid and the plastic regions, i.e., the slippage surfaces, 
may, with the first approximation taken into account, be determined in the region 8 ~ 0 (see 
Fig. i) in the form 

r_ 1 dr ~-~ tg  qq; - -  c t g  qh, c t g  2q~ %2 - -  a n  
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Here, from the entrance side 

btctg 2 

s i n  a exp (0 -- a) t ~ J  ' 
(3.3) 

from the exit side 

r = R~ (0) = h~h-f ~ exp 2 (~z -- 0). 

The minimum value of the drawn portion, % = hlh2 -~, for which our solution has meaning, 
is determined from the condition of the absence of a "rigid plug" and has, in accordance 
with the relation (3.3), the form~min = exp 2a. Integrating along the corresponding boun- 
daries, subject to the condition of no countertension (counterpressure), we obtain (to with- 
in terms of second order of smallness) a lower bound to the operational stress: 

P* ~ 2~g~h~ (I  + ~-~V~ ctg + )  In ~.. 

To determine an upper bound to this stress we draw the rigid-plastic boundaries in such 
a way that continuity of the normal component of the rate vector [17] is maintained. This 
condition is satisfied along the geometrically similar boundaries 

r = pk (0) = si-E-g 

' ] 1/~ 
(l-c~176 (c~176176176 z '-f-sin~Olzl . 

(l - r ~) - s V~ ~tg --~2( ~176 ~2 in ~o~ ~ + ~i~ ~ ~/~j 

An upper bound to the stress is determined from the condition [18] 

P~ V I ~ = N I + N 2 + N 3 ,  

where N I, N2, and N 3 are, respectively, the magnitudes of the plastic deformation, the fric- 
tional forces in the die, and the shearing forces on the surfaces of discontinuity of the 
rates, which according to [16-18] have the form 

J x 2 ] 1 / 2  

0 

N., = 2apkr 2 sin a In kv~ (a) ~ ~ Vhhf~ in k etg -~- + i~cI)l (a), 

Ns = 4akVi  .([P~ + (PL2)~] '/~" sin20d0 "~ ]//%V#h~--(l -- cos a) • 
0 

X ( a - - 3 s i n a + 4 t g + )  +,qb2(m ). 

Noting that r +2(a) < 0, we obtain a lower, and hence a more precise, upper bound 
compared to those given in [16-18]. Taking into account the strength of the friction forces 
in the calibrating portion of our instrument, we obtain finally an approximate estimate of 
the drawing stress: 

l +1 % 3 sin cc-~- 4 {g2 + Hq)2 (a), p = P/(nh~). 
P** .~ P* + .a -- ]/S (t - cos ~) 

Thus,  our  approach  e n a b l e s  us t o  o b t a i n  a t w o - s i d e d  e s t i m a t e  of  t h e  o p e r a t i o n a l  s t r e s s e s  
and,  c o n s e q u e n t l y ,  t o  e s t i m a t e  t h e  e r r o r  in  t h e  c a l c u l a t i o n s .  A compar i son  of  t h e  upper  
and lower  bounds among t h e m s e l v e s  and a l s o  w i t h  known s o l u t i o n s  [18-20] shows t h e i r  a c c u r a c y  
to be satisfactory. 
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As a second example of the construction of statically admissible estimates, we consider 
the stretching of a rod of circular cross section, weakened by an axisymmetric notch (Fig. 
3), subject to the von Mises yield condition, and as the "fictitious" variants we consider 
the singular regimes (3.1). We assume that the notch is described by the equation 

r = R 0 + R1(6, z), RI(0, z) = ' 0 .  (3.4) 

We seek a solution of the "fictitious" problem in the form of an expansion in the small param- 
eter 6. Owing to symmetry under stretching, it is sufficient to consider the domain r ~ 0. 
Taking account of the fact that 

( ~  = o (~ o, 4? V k, 

we need  t o  p u t  ~ = vt3~l ,  which  l i m i t s  t h e  number o f  v a r i a n t s  o f  t h e  " f i c t i t i o u s "  p r o b l e m .  
With r e g a r d  t o  t h e  f a c t  t h a t  A1 ( ~  = - A 2 ( ~  A3(~  = 0,  t h e  e q u a t i o n s  o f  t h e  c h a r a c t e r i s t i c s  
and t h e  r e l a t i o n s  on t h e  c h a r a c t e r i s t i c s  f o r  t h e  f i r s t  a p p r o x i m a t i o n  may be  w r i t t e n  t h u s :  

dz ~i~) " (') ' "  (') r - l a ~ d r )  O. 
= ~affn dr = 4- 1, + ~ )  + = ( 3 . 5 )  

The b o u n d a r y  c o n d i t i o n  on t h e  u n p e r t u r b e d  c o n t o u r  f o r  t h e  f i r s t  a p p r o x i m a t i o n  h a s  t h e  fo rm 

u = " ( n ) = ~ - - g ~ - z  ~=o for r = B  o. ( 3 . 6 )  

The s o l u t i o n  f o r  t h e  f i r s t  a p p r o x i m a t i o n  can  be r e a l i z e d  n u m e r i c a l l y  w i t h  t h e  a i d  o f  f i n i t e  
d i f f e r e n c e s .  I n  t h e  domain 0 5 r ~ R0 we s o l v e  Cauchy p r o b l e m s  w i t h  t h e  r e l a t i o n s  ( 3 . 5 )  
on t h e  c h a r a c t e r i s t i c s  and w i t h  t h e  i n i t i a l  c o n d i t i o n s  ( 3 . 6 ) .  We n o t e ,  w i t h  r e g a r d  t o  t h e  
f i r s t  a p p r o x i m a t i o n ,  t h a t  t h e s e  v a r i a n t s  g i v e  i d e n t i c a l  e s t i m a t e s ;  t h i s  i s  n o t  t h e  c a s e  f o r  
c a l c u l a t i o n  o f  t h e  f o l l o w i n g  a p p r o x i m a t i o n s .  

We c o n s i d e r  now a p r o b l e m  c o n c e r n i n g  t h e  p r e s s i n g - i n  o f  a r i n g - s h a p e d  s tamp i n t o  a h a l f -  
s p a c e  o f  an i d e a l  r i g i d ~ l a s t i c  m a t e r i a l  o b e y i n g  t h e  von  Mises  p l a s t i c i t y  c o n d i t i o n .  I n t r o -  
d u c i n g  a f i c t i t i o u s  p r o b l e m  in  a c c o r d a n c e  w i t h  t h e  r e l a t i o n s  ( 3 . 1 ) ,  we w r i t e  t h e  s t r e s s e s  
in  t h e  p a r a m e t r i c  f o r m  

a.,.2 J = p -+" BDTr cos 2~ ~ %,k (1 - -  a 0  D [  =, 

- -  - -  3"~kDr , o ~  3-limb sin 2% oaa = P B (I -- 2el) D~ I -~ = 

B ~ 3~I2k.(t - -  ~'D72), P = (~,1 .+ ~2)/2, D~ --" 4 ( t  - - a ~  + el) ,  I~ t <  D r  

The characteristics and relations on the characteristics in the (r, z, 8) cylindrical coordi- 
nate system are: 

~t,.., = ( r  - -  1 / ~ ) ,  r = ] f 3 D ; '  tg 2cp, 

dp -4- 2 .3 - ' / 2B  ] /1  + ~2 cos 2q0d T - -  [2B (D~ cos 2(~) -~ cos 4~ W- 

=V 3-1/2B V i  + ~2s in2q0_  3 y k D i 2 l  dr = O. 

To obtain the solution in closed form we use the method of the small parameter, taking E = 
1 - RIR= -I < 1 (RI and R 2 are the inner and outer radii of the ring-shaped stamp). For the 
first approximations we then obtain 

dp (~ + 2.3 -1/~ I / 1  + ~ cos 2r162 = 0, ~o = ~ f 3 o ~  1 tg 2r (o), 
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B (D~ -- 3) sin 2q) (o) dp(')-4- 2.3  -1/2 l / l + ~0 COS '2r162 ') ~ dqr - 

V ,o 
B cos 4@ 0) B o 

D, cos2~t0, ~ - ~ V t  + % s i n 2 ~ p ( 0 ) 3 V A ]  dr 0, j ( < -  

and  t h e  b o u n d a r y  c o n d i t i o n s  a r e  012 = 0 ,  V r ,  z = 0 ;  022 = 0,  z = 0 ,  r <_ R 1, r -> R 2. 
g e n e r a l  p r e s s i n g - i n  f o r c e  i s  g i v e n  by t h e  e x p r e s s i o n  

The 

R2--B 1 

P = 2~ .I ~""-(B1 + q')dqv 
0 

(R - R , )  . ( ~ )  _ --B %. ( i  - 2%) 
cr,.,.. = p(O) + ~ ,- n +  ., 

D[ 

We obtain the parameters ez and ~ from the condition of maximum of the force P. In 
this case, the solution may be expressed in terms of elliptic integrals. If for simplicity 
in our calculations we take ~i = 1/2, then 

[ ?k (R2 -- R1) ( IOR ~ _ 2B ( B~ -- R~) ( R1) ] 
P = n  ~h-~. z =--R,R., + R~) ~-~ ~ 2 + g + ~  . 

Taking note of the fact that dP/d7 = 0, dfP/du 2 < 0, we have 

10R~ T 2 -- BIB 2 T BI 

= - - [ ( 2 + a )  R2+R, ] (R2@R1) .  

For a solid stamp (R I = 0) 

7=- -1 /6 ,  P=- - (2+~+5 /9 )k~R~, - -5 ,Tk~R~.  

The force found numerically under the condition of total plasticity [6] is equal to P = 
-5.8kvR22. Thus, our analytical solution yields an error of at most 2%. We can even find 
an upper bound to the force by constructing the rate field vi with the aid of the relations 
on the characteristics: 

d v t + X h d v 2 - - v l [ ~ , + ( t + a , ) k ~ ] d t n r = O ,  k =  1,2. 

Thus, we have proposed methods for  solving systems of equations for  two-dimensional 
spat ia l  problems of the theory of an ideal r i g i d - p l a s t i c  body in the case of singular regimes 
with a general pieeewise-smooth y ie ld  surface; we have also proposed a method for estimating 
the admissible level of external forces for a smooth yield surface or for regular regimes 
based on the introduction of a "fictitious" problem and extremal properties for the multiplier 
of the external force level for an ideal rigid-plastic body. 

Our approach may also find application in calculations for spatial structures of physi- 
cal or structural materials, anisotropic or powderlike, and in many industrial problems in- 
volving the machining of metals. 
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A CLASS OF COMPOSITE LOADS FOR AN INELASTIC MATERIAL 

A. F. Revuzhenko UDC 539.37 

In solid mechanics a considerable role is played by flow, which in a certain 
sense is the simplest form. In hydrodynamics this relates to Couette flow be- 
tween parallel plates and coaxial cylinders [I], in solid mechanics it relates 
to deformation of thin-walled tubular specimens [2], and in the mechanics of 
loose materials it relates to uniform shear of the material [3]. Construction 
of sufficiently general phenomenological models assumes an experimental study 
of different loading paths, including composite loading paths when the stress 
tensor axes are turned relative to the volume of the material. Composite load- 
ing of metals, rocks, and other solids may be realized by a combination of in- 
ternal pressure, torsion, and tension for tubular specimens. However, for a 
broad class of materials this classic procedure is either markedly complicated 
(e.g., for soils [4]), or it is generally inapplicable. It is of interest to 
find a class of composite loads which on one hand might relate to the simplest, 
and on the other might be used in order to test loose, viscoelastoplastic, and 
other similar materials. 

i. As is well known, a uniform stress-strained state is the simplest. Let a material 
in the fixed direction be subjected to uniform tensile deformation AE I = kAt, and in the 
orthogonal direction to compressive deformation so that the volume is unchanged; As 2 = -kAt. 
Then after time At the same uniform deformation is accomplished in new fixed directions 
turned relative to the previous directions by angle -~At, etc. Deformation is planar, ~ and 
k are positive constants. 

In order to derive equations, we consider a discrete sequence of these uniform load- 
ings. Let Ox1'x 2' be the initial Cartesian coordinate system, and ~ the angle between the 
tensile direction Ox I and axis Ox I' (Fig. I). On coordinate Oxlx = the vector for increment 
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